

Mathematical Institute

Higgs bundles for diffeomorphism groups

Nigel Hitchin
Mathematical Institute
University of Oxford

Hamburg September 9th 2014

Mathematics

ullet gauge theory — Lie group G, connection, curvature, equations....

• replace G by Diff(X)

gauge theory – Lie group G, connection, curvature,
 equations....

• replace G by Diff(X)

• bundle: manifold $E \to M$, fibre X

ullet connection: horizontal distribution $H\subset TE$

• flat iff integrable = transverse foliation

NAHM'S EQUATIONS FOR $SDiff(M^3)$

- 3-manifold M^3 with volume form
- X_1, X_2, X_3 volume-preserving vector fields on M^3
- $\bullet \qquad \frac{dX_1}{dt} = [X_2, X_3] \text{ etc.}$
- \Rightarrow hyperkähler metric on $M^3 \times (a,b)$

A. Ashtekar, T. Jacobson & L. Smolin, *A new characterization of half-flat solutions to Einstein's equation*, Commun. Math. Phys. **115** (1988) 631–648.

NAHM'S EQUATIONS FOR Diff (M^3)

- 3-manifold M^3 with volume form
- X_1, X_2, X_3 vector fields on M^3
- $\bullet \qquad \frac{dX_1}{dt} = [X_2, X_3] \quad \text{etc.}$
- \Rightarrow hypercomplex structure on $M^3 \times (a,b)$

NJH, Hypercomplex manifolds and the space of framings, in "The geometric universe" 930, OUP 1998

ullet compact Riemann surface Σ , compact group G

• principal G-bundle P + connection A

• Higgs field $\Phi \in \Omega^{1,0}(\Sigma,\mathfrak{g}^c)$

• equations

$$F_A + [\Phi, \Phi^*] = 0, \quad \bar{\partial}_A \Phi = 0$$

• G^c -connection $\nabla_A + \Phi + \Phi^*$

• equations \Rightarrow flat G^c -connection

ullet conversely, given a reductive representation $\pi_1(\Sigma) o G^c$

ullet a harmonic section of $\tilde{\Sigma} \times_{\pi_1} G^c/G$

• ... defines a solution to the Higgs bundle equations

• G^c connection $\nabla_A + \Phi + \Phi^*$

equations ⇒ flat connection

• real form $G^r \subset G^c$, max compact H

 $\bullet \ \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$

• flat G^r connection if A reduces to H and $\Phi \in H^0(\Sigma, \mathfrak{m} \otimes K)$

EXAMPLE: $G = SU(2), G^c = SL(2, \mathbb{C}), G^r = SL(2, \mathbb{R})$

$$\bullet \ V = K^{-1/2} \oplus K^{1/2} \qquad \Phi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- U(1)-connection A on $K^{1/2}$
- $F_A + [\Phi, \Phi^*] = 0 \Rightarrow K = -1$ (Gaussian curvature
- uniformization: $\pi_1(\Sigma) \to SL(2, \mathbb{R})$

THE GROUP $SU(\infty)$

• $\mathrm{SDiff}(S^2) = \mathrm{group}$ of symplectic diffeomorphisms of S^2

• $df = i_X \omega$ Hamiltonian vector fields

• Lie algebra = $C^{\infty}(S^2)/const.$

• $SDiff(S^2) = group of symplectic diffeomorphisms of S^2$

• $df = i_X \omega$ Hamiltonian vector fields

• Lie algebra = $C^{\infty}(S^2)/const.$

• $SU(2) \subset SDiff(S^2)$

• spherical harmonics $C^{\infty}/const. = 3 + 5 + 7 + \dots$

• $SU(2) \rightarrow SU(n)$ irreducible representation

•
$$\mathfrak{su}(n) = 3 + 5 + 7 + \ldots + (2n - 1)$$

•
$$SU(\infty) \stackrel{\text{def}}{=} SDiff(S^2)$$

• Poisson bracket \neq Lie bracket (except on SU(2))

PROPERTIES

• invariant metric

$$(f,g) = \int_{S^2} fg\omega$$

• invariant polynomials

$$p_n(f) = \int_{S^2} f^n \omega$$

ullet \sim compact Lie group G

PROPERTIES

• invariant metric

$$(f,g) = \int_{S^2} fg\omega$$

• invariant polynomials

$$p_n(f) = \int_{S^2} f^n \omega$$

ullet \sim compact Lie group G

ullet ... but no complexification G^c

$SU(\infty)$ -CONNECTION

- 2-sphere bundle $p: M^4 \to \Sigma$
- ullet non-vanishing section ω_F of $\Lambda^2 T_F^*$
- horizontal subbundle $H \subset TM$
- ullet such that for each horizontal lift of a vector field X on M...
- $\mathcal{L}_X \omega_F = 0$

EXAMPLE

- 2-sphere bundle $p: M^4 \to \Sigma$
- ullet symplectic form ω such that fibres are symplectic
- ullet define horizontal subbundle H
 - = symplectic orthogonal to fibres

 $SU(\infty)$ HIGGS BUNDLES

$SU(\infty)$ -HIGGS FIELD

• Locally $\phi_1 dx_1 + \phi_2 dx_2$

• ϕ_i functions on Σ with values in $C^{\infty}(S^2)$

ullet \sim functions on M

• $\Phi = (\phi_1 dx_1 + \phi_2 dx_2)^{1,0}$ section of p^*K on M

• connection: $\frac{\partial}{\partial x} + A_1$, $\frac{\partial}{\partial y} + A_2$

 A_1,A_2 Hamiltonian vector fields on S^2 depending on x,y

• Higgs field:

 Φ_1, Φ_2 Hamiltonian vector fields on S^2 depending on x,y

• connection:
$$\frac{\partial}{\partial x} + A_1$$
, $\frac{\partial}{\partial y} + A_2$

 A_1,A_2 Hamiltonian vector fields on S^2 depending on x,y

• Higgs field:

 Φ_1, Φ_2 Hamiltonian vector fields on S^2 depending on x,y

(cf.
$$\nabla_A + \Phi + \Phi^*$$
 flat)

• complex vector fields

$$X_1 = \frac{\partial}{\partial x} + A_1 - i\Phi_2, \quad X_2 = \frac{\partial}{\partial y} + A_2 + i\Phi_1$$

$$[X_1, X_2] = 0$$

- → integrable complex structure
- ullet as long as $X_1, \bar{X}_1, X_2, \bar{X}_2$ are linearly independent
- iff Hamiltonian vector fields Φ_1, Φ_2 are linearly independent

ullet Hamiltonian functions ϕ_1,ϕ_2 for vector fields Φ_1,Φ_2

• linear dependence where $\{\phi_1,\phi_2\}=0$ (Poisson bracket)

ullet defines a hypersurface N^3

$$\left[\frac{\partial}{\partial x} + A_1 + i\left(\frac{\partial}{\partial y} + A_2\right), \Phi_1 + i\Phi_2\right] = 0$$

$$\left[\frac{\partial}{\partial x} + A_1 + i\Phi_2, \frac{\partial}{\partial y} + A_2 - i\Phi_1\right] = 0$$

- two more complex structures ⇒ hypercomplex manifold
- symplectic ⇒ hyperkähler

ullet hyperkähler manifold M^4

• *I*-holomorphic function z = t + is, $p: M^4 \to \Sigma$

• hyperkähler manifold M^4

• *I*-holomorphic function z = t + is, $p: M^4 \to \Sigma$

• ϕ_1, ϕ_2 Hamiltonian functions

• $(\phi_1 + i\phi_2)dz$ gives local $M^4 \cong T^*\Sigma$

• hyperkähler manifold M^4

• *I*-holomorphic function z = t + is, $p: M^4 \to \Sigma$

• ϕ_1, ϕ_2 Hamiltonian functions

• $(\phi_1 + i\phi_2)dz$ gives local $M^4 \cong T^*\Sigma$

 \bullet ω_1 -symplectic-orthogonal to fibres = SDiff(S^2)-connection

THE CANONICAL MODEL

$$\bullet \ V = K^{-1/2} \oplus K^{1/2} \qquad \Phi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- $SU(2) \subset SU(\infty)$
- defines the canonical folded hyperkähler metric
- ullet the extension of the hyperbolic metric on Σ
- real form $SO(2) \subset SU(2), SL(2, \mathbf{R}) \subset SL(2, \mathbf{C})$

THE CANONICAL MODEL

Theorem (Feix, Kaledin) Given a real analytic Kähler metric on M there is a unique S^1 -invariant hyperkähler extension to a neighbourhood of the zero section in T^*M .

• $\omega_2 + i\omega_3 =$ canonical complex symplectic form

Theorem (Feix, Kaledin) Given a real analytic Kähler metric on M there is a unique S^1 -invariant hyperkähler extension to a neighbourhood of the zero section in T^*M .

• $\omega_2 + i\omega_3 =$ canonical complex symplectic form

• $M = S^2$ complete metric (Eguchi-Hanson)

• $M = \Sigma$ surface of genus g > 1 incomplete (complete \Rightarrow polynomial growth in π_1)

ullet take Σ with hyperbolic metric

• $T^*\Sigma \subset \mathbf{P}(K \oplus 1)$

 \bullet the hyperkähler extension is defined on the unit disc bundle in $T^*\Sigma$

ullet and extends to a folded hyperkähler metric on the S^2 -bundle ${f P}(K\oplus 1)$

J.D.Gegenberg & A.Das, *Stationary Riemannian space-times with self-dual curvature*, Gen. Relativity Gravitation **16** (1984) 817–829.

H.Pedersen & B.Nielsen, *On some Euclidean Einstein metrics*, Lett.Math.Phys. **12** (1986) 277–282.

S.K.Donaldson, *Moment maps in differential geometry,* Surv. Differ. Geom., **8** Int. Press, Somerville, MA, 2003 171-189.

$$ullet$$
 Kähler form ω_1 on fibre $i rac{dw dar{w}}{4(1-|w|^2)^{1/2}}$

$$i\frac{dwd\bar{w}}{4(1-|w|^2)^{1/2}} = \frac{dx_1 \wedge dx_2}{2(1-x_1^2-x_2^2)^{1/2}} = \frac{dx_1 \wedge dx_2}{2x_3}$$

- ullet well-defined on S^2
- $\omega_1, \omega_2, \omega_3$ well-defined on $M^4 \stackrel{S^2}{\to} \Sigma$

ullet take Σ with hyperbolic metric

• $T^*\Sigma \subset \mathbf{P}(K \oplus 1)$

 \bullet the hyperkähler extension is defined on the unit disc bundle in $T^*\Sigma$

ullet and extends to a folded hyperkähler metric on the S^2 -bundle ${f P}(K\oplus {f 1})$

•
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 $f(x,y) = (x^2,y)$

•
$$f^*(dx \wedge dy) = 2xdx \wedge dy$$

• symplectic manifold M^{2m} : closed 2-form ω , $\omega^m \neq 0$

• symplectic manifold M^{2m} : closed 2-form ω , $\omega^m \neq 0$

ullet folded symplectic manifold: M^{2m} : closed 2-form ω

• ... $\omega^m = 0$ defines a smooth hypersurface N^{2m-1}

ullet ... and $\omega|_N$ has maximal rank

• symplectic manifold M^{2m} : closed 2-form ω , $\omega^m \neq 0$

ullet folded symplectic manifold: M^{2m} : closed 2-form ω

• ... $\omega^m = 0$ defines a smooth hypersurface N^{2m-1}

ullet ... and $\omega|_N$ has maximal rank

• normal form $xdx \wedge dy + \sum_{1}^{m-1} du_i \wedge dv_i$

Theorem: Any compact oriented 4-manifold admits a folded Kähler structure.

R I Baykur, *Kähler decompositions of 4-manifolds*, AGT **6** (2006) 1239–1265.

(symplectic geometry of Stein surfaces)

•
$$M^4 = M^+ \cup N^3 \cup M^-$$

• Kähler metric \pm definite on M^{\pm}

HYPERKÄHLER GEOMETRY

4D HYPERKÄHLER MANIFOLD

- ullet metric g, complex structures I, J, K
- Kähler forms $\omega_1, \omega_2, \omega_3$

•
$$\omega_1^2 = \omega_2^2 = \omega_3^2$$

•
$$\omega_1\omega_2 = \omega_2\omega_3 = \omega_3\omega_1 = 0$$

• metric $g = \omega_1 \omega_2^{-1} \omega_3$

FOLDED HYPERKÄHLER

• closed 2- forms $\omega_1, \omega_2, \omega_3$

•
$$\omega_1^2 = \omega_2^2 = \omega_3^2$$

•
$$\omega_1\omega_2 = \omega_2\omega_3 = \omega_3\omega_1 = 0$$

• $\omega_1^2 = 0$ defines a smooth hypersurface N^3

• at $x \in N$, suppose $\omega_1, \omega_2, \omega_3$ are linearly independent in $\Lambda^2 T_x^* M$

• 3-dimensional subspace $V_x \subset \Lambda^2 T_x^* M$

• $\omega \in V_x \Rightarrow \omega^2 = 0 \Rightarrow$ decomposable $\omega = \alpha_1 \wedge \alpha_2$

• \Rightarrow projective line in $\mathbf{P}(T_x^*)$

ullet α -planes and β -planes in the Klein quadric

• \Leftrightarrow lines in a plane in $\mathbf{P}(T_x^*)$ or...

• .. lines through a point.

• all folded: $\omega_i = xdx \wedge \alpha_i + \beta_i \wedge \gamma_i$

• = β -plane

• = lines in $P(T_xN)$

$\alpha\text{-PLANES}$

•
$$\omega_1 = dx \wedge \varphi + xd\varphi$$

$$\omega_2 = xdx \wedge \alpha_1 + \beta_1 \wedge \varphi$$

$$\omega_3 = xdx \wedge \alpha_2 + \beta_2 \wedge \varphi$$

• $[\varphi] \in \mathbf{P}(T^*)$

THE GROUP $SO(\infty)$

•
$$S^2 = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 = 1\}$$

• involution
$$\sigma(x_1, x_2, x_3) = (x_1, x_2, -x_3)$$

•
$$SO(\infty) = \{ f \in SDiff(S^2) : f\sigma = \sigma f \}$$

•
$$S^2 = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 = 1\}$$

- involution $\sigma(x_1, x_2, x_3) = (x_1, x_2, -x_3)$
- $SO(\infty) = \{ f \in SDiff(S^2) : f\sigma = \sigma f \}$
 - Lie algebra = odd functions on S^2
 - \mathfrak{m} = even functions

• $SL(\infty)$ -Higgs bundle

• ϕ_1, ϕ_2 even $\Rightarrow \{\phi_1, \phi_2\}$ odd

• $\Rightarrow \{\phi_1, \phi_2\}$ vanishes on circle bundle

• \Rightarrow fold = circle bundle

• $SO(\infty)$ preserves the fixed point set $x_3 = 0$

• homomorphism $SO(\infty) \to \mathsf{Diff}(S^1)$

• $SL(\infty)$ -Higgs bundle \Rightarrow Diff (S^1) -connection

GEOMETRY OF THE FOLD

• Higgs field Φ section of p^*K

ullet ... assume it defines a diffeomorphism from one disc bundle in $f:M o T^*\Sigma$

• ..then $\phi_1 dx_1 + \phi_2 dx_2 = f^*\theta$ canonical one-form

• and $\omega_2 + i\omega_3 = f^*(dw \wedge dz)$

- ullet f maps the fold to a (non-quadratic) circle bundle in $T^*\Sigma$
- Finsler geometry = circle bundle in $T\Sigma$
- Legendre transform $\Rightarrow T^*\Sigma$

 \bullet on f(N), annihilator of $\beta_1, \varphi =$ one-dimensional foliation

ullet ~ Hamiltonian flow

ullet β_2 restricts to a parameter on the integral curve

 \bullet annihilator of $\varphi=$ horizontal subspaces = $\mathrm{Diff}(S^1)\text{-}\mathrm{connection}$

• hyperkähler forms near $\{\phi_1, \phi_2\} = x = 0$

$$\omega_1 = dx \wedge \varphi + xd\varphi$$

$$\omega_2 = xdx \wedge \alpha_1 + \beta_1 \wedge \varphi$$

$$\omega_3 = xdx \wedge \alpha_2 + \beta_2 \wedge \varphi$$

• on the fold N^3 :

closed 2-forms
$$\beta_1 \wedge \varphi, \beta_2 \wedge \varphi$$

ullet on f(N) restrictions of real and imaginary parts of $dw \wedge dz$

EXAMPLE: CANONICAL MODEL

 \bullet N = unit (cotangent) circle bundle for hyperbolic metric

• foliation = geodesic flow

• $\beta_2 = ds$ length

A QUESTION

- for each group $SL(n, \mathbf{R})$ there is a distinguished component of $\text{Hom}(\pi_1(\Sigma), SL(n, \mathbf{R}))/SL(n, \mathbf{R})$
- ... Teichmüller space for n = 2
- $\cong \bigoplus_{m=2}^{n} H^{0}(\Sigma, K^{m})$ using Higgs bundles

ullet Is there an analogue for $SL(\infty,{f R})$ and does it parametrize generalized geodesic structures?

EVIDENCE 1

- circle action $\Phi \mapsto e^{i\theta}\Phi$
- for higher Teichmüller space unique fixed point
- ... = uniformizing representation

$$\pi_1(\Sigma) \to SL(2,\mathbf{R}) \stackrel{S^m}{\to} SL(m+1,\mathbf{R})$$

Is the canonical model the only S^1 -invariant folded hyperkähler manifold of this type?

- S^1 -invariance = $SU(\infty)$ Toda equation
- locally $(e^u)_{tt} + u_{xx} + u_{yy} = 0$
- globally:

$$\frac{\partial^2 g}{\partial t^2} - Kg = 0$$

• $g_{tt} = Kg \Rightarrow \text{volume is quadratic in } t$

• rescale *g* to constant volume metric *h*

• put $h = fg_H$, g_H =hyperbolic metric

$$t(2-t)f_{tt} + 4(1-t)f_t = \Delta_H \log f$$
.

• boundary conditions + maximum $\Rightarrow f = const.$

EVIDENCE 2

- deformations of fixed point of circle action
- for higher Teichmüller space \sim holomorphic sections of K^2, K^3 ,
- Also for $SL(\infty, \mathbf{R})$?

ullet heta canonical holomorphic 1-form on $T^*\Sigma$

 \bullet π Poisson tensor

ullet α holomorphic section of K^m

• h Hermitian form of hyperbolic metric

complex vector field $X^c = \pi(\alpha h^{-(k-1)}\bar{\theta}^{k-1})$

• X= real part of X^c

ullet \Rightarrow the closed 2-forms $\mathcal{L}_X \omega_i$ are anti-self-dual

• first order deformation $\dot{\omega}_1=0, \dot{\omega}_2=\mathcal{L}_X\omega_2, \dot{\omega}_3=\mathcal{L}_X\omega_3$

deformation of hyperkähler metric

 \bullet deformation of polynomial invariant $\sim \alpha$