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GAUGE THEORY AND DIFFEOMORPHISMS



e gauge theory — Lie group G, connection, curvature,

equations....

e replace G by Diff(X)



gauge theory — Lie group G, connection, curvature,

equations....

replace G by Diff(X)

bundle: manifold £ — M, fibre X

connection: horizontal distribution H CT'FE

flat iff integrable = transverse foliation



NAHM'S EQUATIONS FOR SDiff(M3)
e 3-manifold M3 with volume form

e X1,Xo, X3 volume-preserving vector fields on M3

dXq
— = | X, X3] etc.
ph [ X2, X3]

e = hyperkihler metric on M3 x (a,b)

A. Ashtekar, T. Jacobson & L. Smolin, A new characterization
of half-flat solutions to Einstein’s equation, Commun. Math.
Phys. 115 (1988) 631— 648.



NAHM'S EQUATIONS FOR Diff(M3)

e 3-manifold M3 with volume form

e X1,X5, X3 vector fields on M3

e = hypercomplex structure on M3 x (a,b)

NJH, Hypercomplex manifolds and the space of framings, in
“The geometric universe” 930, OUP 1998



HIGGS BUNDLES



compact Riemann surface ¥, compact group G

principal G-bundle P + connection A

Higgs field ® € Q19(x, g%)

equations

Fp+ [®,9%] =0,

I = 0



G°-connection V4 + & 4 o*

equations = flat G°-connection

conversely, given a reductive representation m1(X) — G¢

a harmonic section of > xr, G¢/G

. defines a solution to the Higgs bundle equations



G¢ connection V4 + & 4 o*

equations = flat connection

real form G" C G¢, max compact H

g=bhbodm

flat G" connection if A reduces to H and ® € HO(Z, m ® K)



EXAMPLE: G = SU(2),G¢ = SL(2,C),G" = SL(2,R)

o V=K 12gK!/? <b=<8 ;)

e U(1)-connection A on K1/2
o ['y+ [P, d*] = 0= K = —1 (Gaussian curvature

e uniformization: m1(X) - SL(2,R)



THE GROUP SU(0)



e SDIff(S2) = group of symplectic diffeomorphisms of 52

e df = ixyw Hamiltonian vector fields

e Lie algebra = C®(52)/const.



e SDIff(S2) = group of symplectic diffeomorphisms of 52

e df = ixyw Hamiltonian vector fields

e Lie algebra = C®(52)/const.

e SU(2) C SDIff(S52)

e spherical harmonics C°°/const. =3 +5+ 74 ...



SU(2) — SU(n) irreducible representation
su(ln) =34+54+7+...4+(2n—-1)
SU(x0) ¥ spiff(52)

Poisson bracket # Lie bracket (except on SU(2))



PROPERTIES

e invariant metric

(f,9) = |, fow

e invariant polynomials

pu(f) = [, "

e ~ compact Lie group G



PROPERTIES

e invariant metric

(f,9) = |, fow

e invariant polynomials

pu(f) = [, "

e ~ compact Lie group G

e ... but no complexification G¢



SU(00)-CONNECTION
2-sphere bundle p : M4 —» &
non-vanishing section wp of A?T}
horizontal subbundle H C T'M
such that for each horizontal lift of a vector field X on M...

,CXCUF — O



EXAMPLE

e 2-sphere bundle p: M* - X

e symplectic form w such that fibres are symplectic

e define horizontal subbundle H

— symplectic orthogonal to fibres



SU(c0) HIGGS BUNDLES



SU (00)-HIGGS FIELD

Locally ¢1dx1 + ¢dodxo

#; functions on ¥ with values in C°°(S?)

~ functions on M

® = (p1dx1 + $odxo) B0 section of p*K on M



e connection: £_|_Al, 3_|_A2

ox oy

A1, A> Hamiltonian vector fields on S2 depending on z,y

e Higgs field:

®1, Py Hamiltonian vector fields on S? depending on z,y



e connection: £_|_Al, 3_|_A2

ox oy

A1, A> Hamiltonian vector fields on S2 depending on z,y

e Higgs field:

®1, Py Hamiltonian vector fields on S? depending on z,y

0 0
o —F+ A —i®Py, —F+ A+ iP| =0
ox oy

(cf. V 4+ & + * flat)



e complex vector fields

0 , 0 .
ox oy

[X1,X2] =0

e — integrable complex structure
e as long as X1, X1, Xo, X5 are linearly independent

e iff Hamiltonian vector fields 1, ®5 are linearly independent



e Hamiltonian functions ¢, ¢o for vector fields o4, P>

e linear dependence where {¢1, 9o} = 0 (Poisson bracket)

e defines a hypersurface N3



0 0
[—+A1+73<—+A2>,¢1+73¢2] =0
ox oy

0 0
—+ A1 +iPy, —+ A — 1P| =0
ox Oy

e twO more complex structures = hypercomplex manifold

e symplectic = hyperkahler



e hyperkihler manifold M*

e /-holomorphic function z =t +is, p: M* = X



e hyperkihler manifold M*

e /-holomorphic function z =t +is, p: M* = X

® 01, %> Hamiltonian functions

o (¢p1 + ido)dz gives local M+ = T*%



e hyperkihler manifold M*

e /-holomorphic function z =t +is, p: M* = X

® 01, %> Hamiltonian functions

o (¢p1 + ido)dz gives local M+ = T*%

e wi-symplectic-orthogonal to fibres = SDiff(S2)-connection



THE CANONICAL MODEL

O 1
_ p—1/2 1/2 D =
o V K b K (O O)

e SU(2) C SU(0)
e defines the canonical folded hyperkahler metric

e .... the extension of the hyperbolic metric on 2

e real form SO(2) Cc SU(2),SL(2,R) Cc SL(2,C)



THE CANONICAL MODEL



Theorem (Feix, Kaledin) Given a real analytic Kahler metric
on M there is a unique Sl.invariant hyperkahler extension to a
neighbourhood of the zero section in T*M.

e wo + 1wz = canonical complex symplectic form



Theorem (Feix, Kaledin) Given a real analytic Kahler metric
on M there is a unique Sl.invariant hyperkahler extension to a
neighbourhood of the zero section in T*M.

e wo + 1wz = canonical complex symplectic form

e M = S? complete metric (Eguchi-Hanson)

e M = X surface of genus g > 1 incomplete (complete =
polynomial growth in mq)



take > with hyperbolic metric
™ CcP(K®1)

the hyperkahler extension is defined on the unit disc bundle
in T*X

.... and extends to a folded hyperkdhler metric on the S2-
bundle P(K ® 1)



J.D.Gegenberg & A.Das, Stationary Riemannian space-times with

self-dual curvature, Gen. Relativity Gravitation 16 (1984) 817—
829.

H.Pedersen & B.Nielsen, On some Euclidean Einstein metrics,
Lett.Math.Phys. 12 (1986) 277—282.

S.K.Donaldson, Moment maps in differential geometry, Surv.
Differ. Geom., 8 Int. Press, Somerville, MA, 2003 171-189.



dwdw
41— )1/

e Kahler form wy on fibre 1

dwdw drq N dxo __dxq Ndxo

1 = —
4(1 — jw|2)/2  2(1 — 23 — x3)1/2 2x3

e well-defined on S2

2
o wi,wn,ws well-defined on M4 25



take > with hyperbolic metric
"> CP(Kae1l)

the hyperkahler extension is defined on the unit disc bundle
in T*X

.... and extends to a[folded hyperkdhler metric on the S2-
bundle P(K ® 1)



FOLDING



=

I

e f:R? > R? fz,y) = (22,y)

o *(dx Ndy) = 2xdx N dy



e symplectic manifold M?2™: closed 2-form w, w™ =0



e symplectic manifold M?2™: closed 2-form w, w™ =0

e folded symplectic manifold:M2™: closed 2-form w

e ... w™ =0 defines a smooth hypersurface N2m—1

e ... and w|y has maximal rank



e symplectic manifold M?2™: closed 2-form w, w™ =0

e folded symplectic manifold:M2™: closed 2-form w

e ... w™ =0 defines a smooth hypersurface N2m—1

e ... and w|y has maximal rank

m—1

e normal form xdx Ady + Z du; N dv;
1



Theorem: Any compact oriented 4-manifold admits a folded
Kahler structure.

R I Baykur, Kdhler decompositions of 4-manifolds, AGT 6 (2006)
1239—-1265.

(symplectic geometry of Stein surfaces)
o M*=MTUN3UM™

e Kihler metric + definite on M*



HYPERKAHLER GEOMETRY



4D HYPERKAHLER MANIFOLD

metric g, complex structures I, J, K

Kahler forms wq, wo, w3

N
I
€

NN
I
&

Wi

Wwiwy = wowz = w3wi = 0

metric g = w1w51w3



FOLDED HYPERKAHLER

closed 2- forms wi,wo, w3

Wiwy = wow3z = w3wi = 0

w? = 0 defines a smooth hypersurface N3



at x € N, suppose wi,wo,ws are linearly independent in /\QT;;M

3-dimensional subspace V, C A2T} M

w € Vi = w? =0 = decomposable w = a1 A as

= projective line in P(T%)



e o-planes and p-planes in the Klein quadric

e & lines in a plane in P(T}) or...

e .. lines through a point.



all folded: w; = xdz A a; + B; A ;

p— B—p|ane

= lines in P(T;N)



a-PLANES

wp =T a1 +B1 A

w3z = xdx N a4+ B A @

o [p] € P(T™)



THE GROUP SO(o0)



o 52 ={(x1,x0,23) : x% —I—xg —I—xg =1}
e involution o(x1,x2,23) = (1,22, —3)

o SO(0) = {f € SDIff(52) : fo = of}



o 52 ={(x1,x0,23) : x% —I—xg —I—xg =1}
e involution o(x1,x2,23) = (1,22, —3)

o SO(0) = {f € SDIff(52) : fo = of}

e Lie algebra = odd functions on 52

e m — even functions



SL(00)-Higgs bundle

o1, 9o even = {¢1, P} odd

= {¢1, p2} vanishes on circle bundle

= fold = circle bundle



e SO(oc0) preserves the fixed point set z3 =0

e homomorphism SO(oo0) — Diff(S1)

e SL(c0)-Higgs bundle = Diff(S1)-connection



GEOMETRY OF THE FOLD



Higgs field ¢ section of p*K

. assume it defines a diffeomorphism from one disc bundle
in f: M —T*%

..then ¢1dxr1 + podxo> = f*6 canonical one-form

and wy + w3z = f*(dw A dz)



e /f maps the fold to a (non-quadratic) circle bundle in T*X

e Finsler geometry = circle bundle in T3>

e Legendre transform = T*>



e on f(N), annihilator of 81, = one-dimensional foliation

e ~ Hamiltonian flow

e (> restricts to a parameter on the integral curve

e annihilator of ¢ = horizontal subspaces = Diff (S1)-connection



e hyperkahler forms near {¢1,¢o} =x =20
w1 = dx N ¢ + xdp
wo =xdr Nay1+ B1 AN

w3z = xdx N a4+ B A @

e on the fold N3:

closed 2-forms 81 A @, B> A

e on f(NN) restrictions of real and imaginary parts of dw A dz



EXAMPLE: CANONICAL MODEL

e N = unit (cotangent) circle bundle for hyperbolic metric

e foliation = geodesic flow

e 3> = ds length



A QUESTION




e for each group SL(n,R) there is a distinguished component
of Hom(#1(X),SL(n,R))/SL(n,R)

e ... Teichmuller space for n =2

n
o ... = B HO(>=, K™) using Higgs bundles

m=2

e Is there an analogue for SL(co,R) and does it parametrize
generalized geodesic structures?




EVIDENCE 1
e circle action ® s efd
e for higher Teichmiller space unique fixed point

e ... — uniformizing representation

() = SL(2,R) 25 SL(m + 1,R)



Is the canonical model the only Sloinvariant folded hyperkahler
manifold of this type?

e Sl-oinvariance = SU(o0) Toda equation

o locally (e%)y + uge + uyy =0

e globally:



e g;t = Kg = volume is quadratic in t

e rescale g to constant volume metric h

e put h = fgy, gg=hyperbolic metric

t(2—t)fu+4(1—-t)ft = Apglog f.

e boundary conditions + maximum = f = const.



EVIDENCE 2

e deformations of fixed point of circle action

e for higher Teichmiiller space ~ holomorphic sections of K2, K3,

e Also for SL(oo,R)7



e O canonical holomorphic 1-form on T*X

e 1w Poisson tensor

e o holomorphic section of K™

e h Hermitian form of hyperbolic metric

complex vector field X¢ = r(ah~(k—1)gk-1)



X = real part of X¢

= the closed 2-forms L yw; are anti-self-dual

first order deformation wiy = 0,wy = Lxwo,w3 = Lxw3

deformation of hyperkahler metric

deformation of polynomial invariant ~ «



